Pulmonary delivery of DNA vaccine constructs using deacylated PEI elicits immune responses and protects against viral challenge infection☆
نویسندگان
چکیده
Vaccination through mucosal surfaces has been shown to elicit antiviral immune responses against a number of mucosal pathogens. Here we demonstrate that both mucosal and systemic immune responses can be elicited against a model HIV-1 CN54gp140 antigen when cation-complexed plasmid DNA vaccines are applied topically to the murine pulmonary mucosa as an immune priming strategy. Furthermore, using an influenza challenge model we show that a plasmid DNA vaccine complexed to a less toxic form of PEI called dPEI (a nearly fully hydrolysed linear PEI with 11% additional free protonatable nitrogen atoms) can provide significant protection against a respiratory challenge infection in mice. Furthermore, we show that dPEI polyplexes have the potential to transfect not only mucosal epithelium, but also to enter deeper into tissues through the modulation of tight junction integrity. Taken together, these results demonstrate that less toxic forms of PEI can be effective delivery vehicles for plasmid DNAs to elicit cellular and humoral protective responses in vivo. Moreover, our observations suggest that these less toxic derivatives of PEI could be utilised for topical plasmid DNA vaccine delivery to human mucosal tissue surfaces, and that this application may permit dissemination of the immune responses through the linked mucosal network thus providing protective immunity at distal portals of pathogen entry.
منابع مشابه
Oral Delivery of a Novel Attenuated Salmonella Vaccine Expressing Influenza A Virus Proteins Protects Mice against H5N1 and H1N1 Viral Infection
Attenuated strains of invasive enteric bacteria, such as Salmonella, represent promising gene delivery agents for nucleic acid-based vaccines as they can be administrated orally. In this study, we constructed a novel attenuated strain of Salmonella for the delivery and expression of the hemagglutinin (HA) and neuraminidase (NA) of a highly pathogenic H5N1 influenza virus. We showed that the con...
متن کاملImmunization of pigs with a particle-mediated DNA vaccine to influenza A virus protects against challenge with homologous virus.
Particle-mediated delivery of a DNA expression vector encoding the hemagglutinin (HA) of an H1N1 influenza virus (A/Swine/Indiana/1726/88) to porcine epidermis elicits a humoral immune response and accelerates the clearance of virus in pigs following a homotypic challenge. Mucosal administration of the HA expression plasmid elicits an immune response that is qualitatively different than that el...
متن کاملImmunogenicity of a New HIV-1 DNA Construct in a BALB/c Mouse Model
Background: Cell mediated immunity, especially cytotoxic T cell responses against HIV-1 infection, plays a critical role in controlling viral replication and disease progres-sion. DNA vaccine is a novel technology which is known to stimulate strong cellular immune responses. Many DNA vaccines have been tested for HIV infection but there is still no effective vaccine against this infection. Cons...
متن کاملImmunization of C57BL/6 Mice with GRA2 Combined with MPL Conferred Partial Immune Protection against Toxoplasma gondii
BBackground: We have previously reported that immunization with GRA 2 antigen of Toxoplasma gondii induces protective immunity in CBA /J (H2k) and BALB/c mice (H2d). We aimed to examine whether immunization of a distinct strain of rodent with recombinant dense granule antigens (GRA2) combined with monophosphorryl lipid A (MPL) adjuvant elicits protective immune response against T. gondii. Metho...
متن کاملA Novel DNA Vaccine Technology Conveying Protection against a Lethal Herpes Simplex Viral Challenge in Mice
While there are a number of licensed veterinary DNA vaccines, to date, none have been licensed for use in humans. Here, we demonstrate that a novel technology designed to enhance the immunogenicity of DNA vaccines protects against lethal herpes simplex virus 2 (HSV-2) challenge in a murine model. Polynucleotides were modified by use of a codon optimization algorithm designed to enhance immune r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 170 شماره
صفحات -
تاریخ انتشار 2013